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USE OF SOURCE DISTRIBUTIONS FOR EVALUATING THEORETICAL AERODYNAMICS
OF THIN FINITE WINGS AT SUPERSONIC SPEEDS

By Joax C. Evvarp

SUMMARY

A series of publications on the source-distribution methods
for evaluating the aerodynamies of thin wings at supersonic
speeds is summarized, exfended, and wunified. Included in
the first part of this report are the derivations of: (a) the linear-
ized partial-differential equation for unsteady flow at ¢ sub-
stantially constant MMach number; (b) the source-distribution
solution for the perturbation-velocity potential that satisfies
the boundary conditions of tangential flow at the surface and
in the plane of the wing; and (c¢) the infegral equation for
determining the strength and the location of sources to describe
the interaction effects (as represented by upwash) of the bottom
and top wing surfaces through the region between the finite
wing boundary and the foremost Mach wave.

The second part of the report deals with steady-state thin-wing
problems. The solution of the integral equation for upwash is
presented and applied in numerous examples to obtain the
velocity potential and loading for several families of curved
plan boundary wings. The concept and the evaluation of the
suction force along subsonic leading edges are included. The
loading associated with the vorter sheet (or disconfinuily in
sidewash) behind subsonic trailing edges is described and
evaluated for wings satisfying the Kutta-Joukowski condition
along subsonie trailing edges.

The third part of the report approximates the integral equa-
tion for unsteady upwash and includes a solution of the approxi-
mate equation. Exrpressions are then derived fo evaluate the
load distributions for time-dependent finite-wing motions.

INTRODUCTION

The analysis of the aerodynamic effects in the vicinity of
thin wings at supersonic speeds can be simplified by linear-
izing the partisl-differential equation of a compressible
fluid. This linearization is accomplished by assuming that
the perturbation-velocity components associated with the
wing are small in comparison to the velocity of sound and
that the free-stream Mach number is sufficiently different
from unity. Solutions to the linearized partial-differential
equation of the flow that satisfy the boundary conditions
in the vicinity of the wings must then be found. The flow
must be tangent to the wing at its surface and no disturbances
can propagate ahead of the forward Mach envelope of the
wing.

Numerous approaches lead to solutions of the steady-state
thin-wing problems. For two-dimensional wings, the Ack-

eret theory (reference 1) may be applied to evaluate both
lift and wave-drag coefficients. The line-source and point-
source methods of references 2 and 3 may be effectively used
to obtain solutions for the aerodynamic coefficients of three-.
dimensional wings if the flow on the bottom and top surfaces
are independent. This condition holds for symmetric wings
at zero angle of attack and for wing regions influenced only
by supersonic leading edges. (That is, the component of the
flow normal to the edge is supersonic.) Ving regions influ-
enced by upwash in the flow field between the wing boundary
and the foremost Mach lines, however, must be excluded.

The effects of the upwash field may be evaluated for wings
of straight-line plan boundaries by the conical-flow method
of references 4 to 6. The doublet-distribution method of
reference 7, as applied to the triangular wing, inherently
ineludes the effect of upwash fields and may conceivably be
extended to obtain quite general solutions for thin three-
dimensional wings. An approach to this extension and a
synthesis of the various methods as special cases of a general
theory are included in references 8 and 9. The application
of horseshoe vortices for solving the finite-wing problem is
included in reference 10.

The time-dependent aerodynemic effects (including the
transient disturbances of gusts, changes in angle of attack,

skin vibration, and flutter) near thin wings at supersonic

speeds are more difficult to obtain. A number of investi-
gators have studied two-dimensional time-dependent flows

over thin wings; these flows are generally included as special

cases of the theory of reference 11. The method of refer-

ence 11 is similar to the steady-state method of reference 8 and

includes three-dimensional or finite-wing solutions so long as

the aerodynamic effects of the bottom and top wing surfaces

are independent.

If the upwash in the flow field between the wing boundary
and the foremost Mach wave could be evaluated, the methods
of references 3 and 11 could be applied to determine the
serodynamic coefficients in the flow field of lifting three-
dimensional thin wings at supersonic speeds. This approach
to the evaluation of the upwash field implicitly or explicitly has
led to the methods of solution developed at the NACA Lewis
laboratory and presented in references 12 to 19. The work
ineluded in these reports is extended and unified herein.

The fundamental equations are derived in general form in
the first part of the report. The applications of the integral
equation for determining upwash to obtain the flow over
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wing surfaces for time-independent and time-dependent
problems are included.-in the second and third parts, respec-
tively. Specific examples are included at pertinent points
throughout the discussion.

I—INTEGRAL EQUATION FOR UPWASH

In order to unify the discussion, parts of the fundamental
treatment of reference 11 are repeated A similar discussion
for steady-state potentials is given in reference 3. The
presentation includes the derivations of: (1) the time-
dependent; linearized partial-differential equation for the
perturbation-velocity potential of an ideal fluid, (2) the
fundamental solution that will satisfy the boundary conditions
on the wing, and (3) the integral equation for the upwash
over the wing plan boundaries.

Differential egquation.—The linearized Euler’s equations
for a compressible fluid may be written

a Do _ 1 op )
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where
P static pressure
t time
U free-stream velocity
z,.y, 2. Cartesian coordinates (free stream pa1 allel to :c-ams)
P - free-stream density
¢ perturbation-velocity potential (based on free-stream
velocity)

(For convenience, a complete list of symbols is included in
appendix A.)

When equations (1) are multiplied by dz, dy, and dz,
respectively, added, and integrated, the result is
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where ¢g(2) is an integration constant at any given time.
The linearized continuity equation assumes the form
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or, because the speed of sound ¢ is
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equation (3) becomes
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Elimination of % between equations (2) and (3a) gives

2
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where M is the free-stream Mach number and the subscript
has been dropped from ¢.

Equation (4) is the required linearized partial-differential
equation for steady or unsteady velocity potentials. If ¢ and
g are independent of time, the Prandtl-Glauert cquation
results.

If the flow ahead of the body is uniform and undisturbed,
the function g(t), which is independent of position, will be

constant (from equation (2)) and equal to ﬂ’; the term 32

will then contribute nothing to equation (4) Under these
condltlons, which are assumed for the rest of the analysis,

o dEE)

where C, is the pressure coefficient.

A change of variable will convert equation (4) to a standard
form of the wave equation. The transformations are

¥ =z
y'=+1-My
g=1—M?2 (5)
=1 —M”)t-i—LM
Equation (4) then becomes
ai aﬂ 2 1 aﬂ
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Basic solutions of equation (6) corresponding to spherical

waves are
1 1 R’
=gt ~5(t+%)]
and (7

I
where

R =T
132=M2_"_-1

f  arbitrary function representing a source strength

Garrick and Rubinow have shown (reference 11) that the
basic solution for Af>1 is obtained as the sum of equa-
tions (7). If this solution is transformed to a general point
in the @, ¥, 2 space, each of the addends becomes a retarded
potential in the basic solution of equation (4), which is
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where £, 7, and { are Cartesian coordinates of the souree, and
R is given by

B=+@—8*—F@y—n'—F ()’ (9)

Extended solutions of equation (8) may be obtained by
integration with respect to any of the variables £, 4, or {.
For thin wings, the sources of the disturbances will lie in the
plane of the wing, which may be defined by the relation
¢{=0. The immediate problem is to determine the strength
of the source f in order to satisfy conditions of tangential
flow on the surface of the wing, which in linearized theory
is treated as though it were in the 2=0 plane.

Fundamental solution for thin wings.—The impulses that
the wing transfers to the fluid are primarily in the z-direction.
This fact suggests that the strength of the source f is closely
associated with the z component of the perturbation velocity

g%- The value of g—"-: at each Jocal point on the constraining

wing surface is determined only by the local wing slope near
that point.

The z component of the perturbation velocity obtained
by differentiating the isolated source solution of equation (8)
is

dp_  f20¢
32— "R oR (10)

The wing dictates that % cannot be zero near z=0. Equa-
tion (10), however, indicates that gg will be zero in the
(Infinite values of
%% are generally included in this condition.) The quantity

z,¥ plane except at points near B=0.

R is nearly zero either close to the source, where (xz—§&),
(y—1n), and 2z are small, or on the boundary of the Mach
cone from the source, where (x—E&P=p%(y—n)?+2%. As
may be verified by direct calculation in specific examples,

the second condition does not contribute to the value of %

at the point (z,%,0) on the constraining wing surface.

In the vicinity of the point (2,7,0), the source strength
per unit ares assumes & mean value obtained by replacing
£ and 5 by x and ¥ in the source strength f of equation (8).
The velocity potential at point (z,,2) associated with this
substantially constant source distribution in the z=0 plane
may be obtained by integration over the source area included
in the forward Mach cone. The field of integration (fig. 1)
is bounded by the curves £=§ and (z—£)?—p*(y —n)*—B222=0
yielding the velocity potential

1
- [H"E V(I—E)’—E#] d
¢=2f(a:,y,t) dt 9 2’7 3__oi2
J;‘ f[,_% m] VE&—8'—ply—n)*—p2
___w (z—Bz—&) (11)

For steady flows, this equation is the Ackeret value for the
potential of an unswept two-dimensionel flat plate and repre-
sents the contribution of the local point to the velocity

potential near that point. Partial differentiation of equa-
tion (11) with respect to 2 gives

2 —w(e,y,0 =20, 12

where w is the local z component of the perturbation velocity
measured positively outward from the wing surface.. The
function f at an arbitrary point (£, 3) is thus proportional to
the z component of the perturbation velocity at that point.

The fact that %E from equation (12) is independent of & illus-

trates that the sources along the Mach cone for which 2=0 do
not contribute to w. (Neither the basic solution of equation (8)
nor its derivative, equation (10), is defined on the Mach cone.
The integration, equation (11), of the basic source solution
and the derivative, equation (12), of equation (11) are, how-
ever, defined functions. The order of integration and differ-
entiation of the basic source solution to obtain equation (12)
cannot be interchanged without special precautions.)

A condensation of the notation is advisable at this point.
The time delays that occur in equation (8) can be denoted by
7e and 7, where

=DM G FGy—n—FZ

e Ble B
(13)
_@—9M_Je—D—FG—D—F7
) ﬁic ,326

Functions of the time delays may then be abbreviated as
Ja=f(&n,8—7a)
Jo=f(Em,t—) (14)
Jen=fE n,8—7a) +f 0, t—75)

In this notation, the velocity potential that is obtained by
integrating the sources in the z=0 plane over the area S
included in the forward Mach cone is

_ 1 (wetwy)dE dy
o 2ff L Ve——Fy—n'—F2
=____l_ff Wa,s GE dy
27 ) Js Ne—8"—Bly—n)"—p2
Equation (15) was derived in reference 11 for time-dependent

velocity potentials and in reference 3 for time-independent
velocity potentials.

(15)

~Forward Mach cane

zor § Jx’ wz
x,7, 0
Infe/r;/e/{{{n/{/'%a{/ch cone

U z=0 plane (eguctionn R=0)
= or £
FicUure 1.—Field of integration for evaluating veloeity potential {equation (10)) near plane

of sources.

A physical interpretation (reference 11) may be given for
the time delays, 7, and 7, of equations (8), (13), and (15).
If a disturbance is generated at point (¢,3) only at time {=0,
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the wave front from that disturbance will be spherical about
8 center that moves with the free-stream velocity. The
trace of the waves on the z=0 plane is illustrated in figure 2.
The wave front will enter and emerge from the point (z, ¥, 2)
at two later times 7, and r,. The equation for the spherical
wave path that passes through the point (z, ¥, 2) is

@—E—Un)?+ y—n)'+22=c"

_E—M v(x—s)’ —F = —F%
8% B

or

which agrees with equation (13). Thus, at a given point
(x, ¥, 2}, the strength of the same wave at the two times r,
and 7, (in accordance with equation (15)) contributes equally
to the velocity potential despite the change in the radius of
the wave front. At a given time £, only the wave fronts
that are entering and emerging from the point (x, ¥, 2} con-

Mach line -~

f

x or £

F10URE 2.—Relation between time delays 7, and 7, and position of wave front.
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FigURE 8.—Comparison of Cartesian and oblique coordinate systems,
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tribute to the velocity potential. These two waves originated
at (£,1,0) at times (t—7.) and (t—ms).

The potential on the surface of the wing may be evaluated
by equation (15) with z set equal to zcro. The boundaries of
integration then include the forward Mach lines from the
point (z,4,0). The integrations may generally be simplified
in an oblique set of coordinates whose axes lie parallel to
these. Mach lines. The transformation equations relating
the oblique and Cartesian coordinate systems shown in
figure 3 are

r=2—§ (&—8n) ﬂé (E-i-Bn)
E=F€Z (8+1) n=ﬁ (8—7)
Y y . (16)
rw=2—ﬁ (x—By) S0=55 x+8y)
35:% (Sw‘{‘rw) y=ﬁlf (sw_'rw)J

(In references 12 to 19, the symbols % and » were employed to
represent the oblique coordinates. These symbols were re-
placed by r and ¢ in the present report to avoid confusion
with the common usage of « and v as velocity components.)

The elemental area in the 7, ¢ coordinate system is 1%% dr ds.

Equations (15) and (13) then become (for 2=0)

Wy dr ds

1
——ar) | e an
T M(sy—8+rp—r)+2+/—0) (s.,—s)
5 (18)
AI(SM,—S—]-T“,—'T) 2'\/(rw"‘r) (8—8)
Mpe

If only supersonic leading ecdges are included in the
forward Mach cone from pomt (ru,Sw), w may be evaluated
in terins of the effective wing slopes ¢ measured in y=con-
stant plancs by the relation

(19)

w=Ueg

(The value of ¢ would thus be positive for either top or
bottom surface of a wedge wing at zero angle of attack) If
a subsonic leading (or traﬂmg) edge is also included in the

forward Mach cone, the slopes of the streamlines L—-U

associated with the upwash between the wing boundary and
the foremost Mach wave must be evaluated and included in
the calculation (equation (17)) for the velocity potential.
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Integral equation for upwash between wing boundary
and foremost Mach line.—FEquation (17) contains no
description of the origin of w; the velocity potential in the
flow field Sp of figure 4 may then be independently calculated
with respeet to either the top or bottom wing surfaces.
These two potentials are

- f{ (O'T)a » dT' ds _
T 21w « Vro—1) (5—8)
Az dr ds

'M" f LD Vrp—1 (sp—8) (20)

. (UB)E b dr ds
wr= HMT f fs. JTo—n) Go—s)

U Ag,s dr ds
QRIFJ‘L,, V(ro—r) (sp—8)

where rp and sp are the coordinates of the point at which o
is evaluated, o7 and oz are the slopes of the wing on its top
and bottom surfaces, and M represents the slopes of the
streamlines in the field Sp from the point of view of the top
wing surface. The pressure may be calculated by sub-
stituting' either equation (20) or (21) into equation (2).
Because no pressure discontinuity can persist across the Sp
region of the z=0 plane,

e2)

aor_{_ Ub(p-f Bqag_l_chaB (22)

Equation (22) has the solution
er=vs+2H @~ Ut,y) (22a)

where H is an integration funection.
{21), and (22a), there result
S« 2\”(7'13"‘7') (sp—8)

R f
ff (_O'B+UT)a,b drds
~-‘f’f « 2/(ro—7) (85—8)

From equations (20),

(O'BTO'T)a » dr ds +H (202)

—H (214a)

J‘ f Aep dr ds
T2 ) s V(ro—7) (8p—8)

o] el s

The function 2H represents the difference in potential
across the z=0 plane (equation (222})) corresponding to the
strength of vorticity in the wake of the wing. For anti-
symmetric wings, ez+or=0 and H is the potential on the
top surface of the vortex sheet.

The foremost Mach wave (fig. 5) originating on the leading
edge generally represents a line of infinitesimal disturbance

+H (22b)

along which H may be set equal to zero at all times. The
function H remains zero along y=constant lines for values
of z not intercepted by the wing or material body (region
Sp s of fig. 5 (a)). The region Sp; generally contains a
vortex sheet lying in the plane of the wing, and H is not
zero. The function H(y), established along the wing edge
at some time ¢, remains unaltered for later times along a
curve that sweeps downstream with the free-stream velocity
and has the form of the wing trailing edge.

()

(2) Fields of integration for evaluating apwash between wing boundary and foremost Mach

wave.

{b)
(b} Fields of integration for equations (28} and (29},

FIGURE 4.~Wing region influenced by fsolated subsoric leading edge.

Equation (22b) represents the integral equation for evalu-
ating the slopes of the streamlines in the upwash field. These
slopes may generally be defined by the following two equa-~

tions:
O\O)“ bdr ds (UB’—‘O'T)a,de' ds
f fs Vro—1)(s0—9) f f « 24 Go—1) (Bo—9) (23)
and
(M) o, s dr ds _ 2M=w
f 85 /(rp—T) (8p—3) T 2 (24)
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The actual slope \ is then the sum of the solutions for the
slopes obtained from equations (23) and (24):

A=Nothg . . o (25)

For regions such as Sp of figure 4 (a), H=0 and only equation
(23) need be considered. Forsteady-state solutions, the time-
delay notation a, b may be disregarded in equation (23).

II—TIME-INDEPENDENT FLOWS »

The concept leading to the derivation of equations (23)
and (24) may be extended in principle to define the upwash
velocity components in the plane of arbitrary thin wings at
supersonic speeds. Equation (17) then yields the velocity
potential from which the aerodynamic coefficients may be
derived. . The effects of the upwash field have been evalu-
ated for a class of curved plan-form wings, and the corre-
sponding velocity potentials of time-independent configura-
tions have been derived. Included in the calculations are
wings with subsonic leading and trailing edges connected to

supersonic leading edges and a few cases of wing regions.

influenced by interacting upwash fields.

Evaluation of isolated regions of upwash off subsonic
leading edges.—The steady-state solution of equation (23)
is conveniently derived for the wing of figure 4. The origin
of coordinates is placed at the junction of the supersonic and
subsonic leading edges. These are defined, respectively, by
the equations

s=g&{r) or

r=ry(8) } @6)

8=8,(r) or r=ry(s)
Equation (23) then becomes
f’n dr J‘*D Ads J‘ F’(T) {op—or)ds
0 Afrp—r Jum +fsp—s 1/1';,—1' ay  2+/sp—s
(27)

(Inasmuch as Az is zero, A, is replaced by X in equation (27).)

Because equa.tion (27) must hold for all values of rp, which
does not appear in the integration with respect to 8, the
equation may be reduced to

f‘m \ds ___f“(r) (O'B—'O'r)ds
&2(r) -\/89—8 T s 2-\,"85—'8

This reduction shows that for steady-state solutions only the
wing slopes along the forward Mach line contribute to the
upwash at the point (rp, 8p).

Equation (27a) may be solved, as in reference 14, as an
example of Abel’s equation (references 20 and 21} to give

.10 dﬂp f’lc” (O’B—O'T)dv
T 78 ss(m/s—-sp u  24/ep—v

- (278)

Ar,8) =

(27h)

Wing bouhdary

*~.. Foremost
\\Mach line

(a)

(b)

(¢} Point (rv, $w} on wing surface,

F1gURE 5.—Integration boundaries for evaluating wing region influenced by subsonlo trailing
edge.
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where v has replaced s as a variable of integration. HEqua-
tion (27b) may also be expressed in differential form as

d\_ (ox—or) YEa—0

dv 27(s—i)ys—s

(27¢)

where a wing element of length dv and having the effective

slope 63;6" at point (r,2) produces an increment d\ at point

(r,8) (fig. 6). Either by interchange of the order of integra-
tion in equation (27b) or by integration of equation (27¢},
an alternative expression for X results

1 b (U’B—O'T)‘\,/s;———‘;dv

Are) = 27d,
r:8) 2r/8—8.Ju g—v @7d)
|
Wing boundory
r=rifs) or s=3:(r}) o
= &g Or v

FIGTRE 6.—Ceometric significance of factors in equation (27d}.

If (¢z—0or) is independent of 8, either equation (27b} or (27d)

gives
Ur) 80 —8 () -1 (s —a(®)
[\/ 3—8(r) tan ‘/ 8—8x(1) ](2‘6)

Aerodynamic effects of isolated regions of upwash.—
The contribution ¢, of the upwash field Sp to the velocity
potential on the surface of the wing in figure 4(b) may be
computed from equations (17) and (19) as

?

_ U (nea_ dr J‘*u Nds
#D Mr}y  ro—rJun Js,—s

Ars)=

(28)

If \ is eliminated from equation (28) by means of either
equation (27a) or equation (27d}, there results

U J" ) dr f 0 (gg—op) 48
8

o7 xSy ra—rJun T 2 Je.—s -

(U'B“'D'r) drds
==it:) 0. 5 e

The contribution of the upwash field is thus replaced by an
equivalent contribution on the wing surface. The surface
velocity potential at (r,, 8,) then becomes

U opdrds
__mfjlswl ‘\/(T'm—-i") (8.—8)

U (0'3‘!" 0'1') d" ds
W‘;‘f J:?w.z 2 JEe—r)(su—9)

(282)

(29)

_For thin-plate wings, or for antisymmetric solutions (such
as evaluation of the effect of uniform rate of roll}, (¢a-tor)=0
so that the integration over the area S, s vanishes. In this
case, the contribution to ¢ of the upwash field cancels the
direct contribution of the part of the wing that generated
the upwash field. Hence, elteration of the thin-plate-wing
plan boundaries in the region S, . (fig. 4 (b)) does not alter
the surface velocity potential at point (ru,8,). (An elegant
derivation of this fact is presented in reference 22. Because
there is no contribution to the velocity potential shead of
the forward Mach cone, equation (17) may be written for
steady boundary conditions as

I

Two auxiliary point functions may now be defined as

1 = wdr
X(re, 8)_—J[1rf_.. o

1 J"- w ds
Mr)-—w \s,—s

In terms of these point functions, the velocity potential is

Y(r; 8p) =

_ [~ Xds of o re Ydr
¢ - fs,.,—s ¢ —o ‘lrw—r

Each of these equations for X, ¥, and ¢ are forms of Abel’s
equation and may be solved sccordingly. For an anti-
symmetric wing of plan boundary as shown on fig. 4 (b),
¢ (7, 84,)=0 if r<rs(s,). Henece Y is zero for this range also.
The velocity potential may then be evaluated only from the
region S, of fig. 4 (b).) Pressure coefficients may be ob-
tained by substituting ¢ from equation (29) into equation
(2a). Perturbation-velocity components are obtained from
the gradient of ¢.

As illustrations of equation (29), two examples are pre-
sented. The first is & wedge wing (fig. 7) with plan-boundary
equations s=—Fkyr and s=kyr. The wing slopes are taken
as sp=c+a and er=c—«, where 20 is the wedge angle and
« is the angle of attack. The velocity potential on the top
surface of the wing is then (reference 12)

2Us [ 8uthiru s (s..
RI-r[ vE e

VEro—s, . 2Ua [k + ki —
loe: Vs ot o ]Jf:r.f,r I:\/ 8, (ke u—sa) +

(8w+k1rw) -1 [k (Iczr,, 8,,)
’\-‘Ikl tan (k1+k2)8w

kzr w)

(30

This solution for ¢ is the addition of terms that are dependent,
onandindependent of the angle of attack. Theeffectsof angle
of attack may therefore be evaluated on flat-plate wings
whose plan boundaries coincide with those of the chosen
wing. This example illustrates a general superposition
principle that follows directly from the linearity of equa-
tion (15) with respect to either w or ¢ (from equation (19)).
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The velocity potential of a flat-plate wing (fig. 8) having a
straight-line leading edge s=—/Fr coupled to an arbitrary
subsonic leading edge s=g(r) or r=ry(s) may also be
evaluated explicitly. In this example, oz=—or=eq, so that
@ i

9
o202 | Ve E G +

ittt [BGre—rs)
Jh o (sw+k1r,)]<31)

where r; is a function of s,. The factor multiplying « in
equation (30) may also be obtained from equation (31) by

Su,

setting ry= T

Some complications occur if the supersonic leading edge is
connected to two subsonic leading edges that are located in
the forward Mach cone from the point (ry, 8,) {fig. 9). The
contributions to the velocity potential of each of the upwash
fields may be independently calculated from equations (28)
and (28a) to give :

__U;J‘ _ Mdrds =___U_ff (ep—ar) drds
Mrn] Jsop ro—1)(8—8)  Mr) Jseam 24/(o—r) (3,—9)
(32)

ca—ap)drds

_{op—op)drds

a2 '\.! (ru—T) (80—8)

-
. (33)

2 o 0=l L

yormn

Section A-A

F1oUurE 7~Discontinuously swept wedge wing,

Fiounk 8.—Boundary limits for equatinn (31).

1 7
" <-Origin of-foremost
".‘ Moch waves—- : -

Foremos?--_

Mech wave " Moch wave

“-.—-Region solved i
equations (35] to (37}

Lo Field T this
region influsnced
by Sva

FiaurEe 9.—-3_égions of integration for caleulating velocity puteﬂtial on surface of wing of
finite thickness influenced by two independent perturbed flow flelds external fo wing
surface.

Addition of these contributions to those of the wing area
Suatersrsy, a8 evaluated by equations (17) and (19), gives
(reference 12)

_ U (optordrds
= mffs-uw 24(7'1,'—'?') (sw_s)
U f __osdrds
Mr) Jsus Yora—n) G

34

U f ardrds
Mr) Jsos (ro—7) (8.,—3)
The role of o7 and ¢ is thus effectively interchanged for the
regions of integration 8,5 Likewise, for antisymmetric con-

figurations (0z+or=0), the arcas S,; and S,s give no
contribution to the velocity potential. '
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Aerodynamic effects of inferacting regions of upwash.—
If interacting upwash fields are included in the forward
Mach cone from the point (ry, s,), s in the shaded region of
figure 9, parts of the upwash field must be evaluated before
the velocity potential can be computed. The effective wing
in application of equation (84) includes the upwash fields
Sp: and Sp, (fig. 10) for which gz=—=—NA. The velocity
poten'ual may then be written

(G‘B-{-U'T) drds _
JI‘A" J‘_L.a-'-n 2'\/(7‘,5—"') (813_8)

ff __ggaras dr ds
Mr ) Jsus \/(r,,—r) Gu—8)

f f opdrds
Mr ) Jsus Tu—1) Go—s)

__Mdrds
ﬂf‘ﬂ" f_[sn.x 1/()‘,,,—2‘) (sln—s) +

Tf_ J‘ J _ Mdrds
Sos

Vre—1 a—8)
Each of the upwash streamline slopes may be evaluated by
equations similar to equation (27d). In the notation of fig-
ure 10 (and with » replacing 8 as a variable of integration),
the contribution of the flow field Sp; is

(35

ff Ndrde _____U_J‘n(ni :
T r) Jso A Po—T1) (82—0) Mx
. ra{s3)
Y P I

R

dr a(ra) dv

V=) Jutn

J‘s;(r-) nr,p)dy

£} -\.-’l 8,—0

) (g5 —o7) V83 —3 ds

\/ {8,— 0} (1—8;) Jn(?) (v—s) (36)

Interchange of the order of integration with respect to ¢ and s and evaluation of the integral with respect to » give

M,J fs,,, J(rl(f)- Eﬁ—s):

where 8; is & function of r, and s, is a function of ~.
Likewise,

Ry f fs. [ Tian

J‘ I‘ Nadrds
“Mr) Jsos Vo) Gu—9)

where 7, is a function of s, and r; is a function of s.

the velocity potential in terms of the wing slopes and plan-boundary equations.

-1 (33

—1 ra—1) Putrs—2r) —2(ry—1) (rs—r)

(O'B—O'T)dr ds
'\/(T,,—T‘) (8,,—8)

—8) (818:—28) —2(8;,—3) (8,—5)

2/ (82— 8) (8.,—8) (8..—83) (83— 83) (86)

(Equation (36a) reduces to the form of equation (28) when s,=s8;(rs).)

(O’B— 0'1'!) drds (37}

u f Ty
2Mﬁf e L

Elimination of M and X; between equations (35), (36a), and (37) yields

'\" (ru—r)(8.—9)

2'\/(7'3'—‘7') (T,,—-T) (T'w—f'n) ("z—'f's)

An alternative scheme (suggested in refer-

ence 14) would be to derive all of the upwash slopes A by means of equations similar to equations (27b) or (27d) and then to

evaluate ¢ directly from equations (17) and (19).
upwash fields msy be solved in a similar manner.

If the upwash fields continuously interact as they do for
the wing shown in figure 11, the solution of an integral
equation is required (reference 14). The slopes of the
streamlines from equation (27d) in the upwash region

S p,1 are
| [ oo
T8 —8, (8—

J‘ss N (1, ) V83— Ve —v ] 38)

¢ (8 —0)

where v is the integration variable in the g direction and s,
and g; are functions of r.

Similarly,
1 n (cp—oz) Vie—u
A U e P
A (1, 8) Vra—u
= 9

where % is the integration variable in the r direction and 7,
and r; are functions of 8. The functions A, and A; can there-

More complicated examples including doubly interacting external

~, -
~ o

FicurE 10.—Wing including regions of interacting upwash fielis.
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fore be determined from the two equations, at least in
principle, either by successive approximations or by direct
substitution and solution of the resulting integral equation.
(If the wing has a symmetrical plan form about the 2-axis,
Aa(r,8)=N (8,7} and the two equations (35) and (36) become
the same, If the flow is conical, either A or X; is a function
of s/r.) Once the slopes of the streamlines in the upwash
field are determined, the velocity potential may be evaluated
from equations (17) and (19).

Calculation of perturbation-velocity components.—The
perturbation-velocify components may be obtained by
partial differentiation of the velocity potential. This differ-
entiation may be performed prior to the integrations indi-
cated in equations such as (17}, (29), (34), and so forth.
The method is illustrated, as in reference 15, for the wing
of figure 12, which includes only supersonic leading edges in
the forwerd Mach cone. If the velocity potential is computed
at point (%,%) and at point (z-+dx,y), the result is

U o d dy
== | fs o= 0
. Oc
o+s dx |} dédy
NG DL
z TJ Js Y@@—85'—py—n)?
U o dy

- (41)

2d
7 e Ja—p—

where the line integral is evaluated along the line shd, and
the coordinate £ may be eliminated from the line integral
by means of the equation for the leading edge. Subtraction
of equation (40) from equation (41) and cancellation of dx
yield

Qo
2 U(( %t
0z 7 JJs Ve—p'—Fy—n’
U

a dy
Y L 49
T Jabd o (z—£)*— B (y—n)* “

This result may also be obtained by formal differentiation of
equation (40). In g'similar manner

o
2 Uf TR o d
oy 7J) JsVe—0"—By—m)® 7 Jud Je—5—Fy—n)?
(43)
Equations (42) and {43} may also be written in the oblique
coordinates as o . .

Q’+§E)d}ég . o
%0 U J‘f or ' ds U e{ds—dr)
oz 287 ) Js Vro—1) (su—8) 287 Jaba /(ro—1)(s,—9)
(42s)
Oc O¢
% U ([ M;g _olstdn)
by 27r. J8 ‘V(rw_.r)(sw_s) 2m Jaba ‘\/(Tw_r)(sw_s)m

(432)

Iy,

FIoURE 11—Wing plan form and areas of upwash for equations (38) and (30},

o

= Wing boundary- o Yy

$

Y
x

(2)

(s} Wing point (z, ).

~f
.
Sole
<&

x+rdx,y
(b
(b} Wing poinf (z--dr, #.
. Fiaure 12.—Flelds of integration for equations {40} to (42).
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The line integral of equation (42) corresponds to the discontinuous change in flow direction that occurs along the
leading edge, and the surface integral corresponds to continuous changes in slopes over the wing plan area.
of the surface integral along lines of discontinuous %‘é results in additional line integrals.) The impulses that lead to the

pressure distributions on supersonic wings are thus generated at points where the flow direction is altered. For flat surface

wings, these impulses are generated only along the leading edge.
When the surface velocity potential is influenced by an upwash field, as in figure 4, the velocity potential may be

calculated from equation (29).

The evaluation of the perturbation-velocity components is similar to the derivations of

equations (42) and (43) except that there is effectively a shifting line of discontinuous wing slopes between the plan areas

Sy, and Sy,2, which adds line integrals to the ealculation (reference 15).

The partial differentiations of ¢ with respect to

z end y (fg. 4 (b)) have been evaluated in appendix B and are expressed in oblique coordinates as

ad'r bO'T
( +bs dr ds

[b(an+€r) a("r'—"')] dr ds

U U'T(ds—dl") _

ai_ 26w f_[s* Vrw— T 4pr ff

r) (8,—8)

drs
U (opton)ds—dd) U (1 ) (6r—az)ds

I(rw_r) (8.—8) 2ﬁ1r ab ‘\rl(rw_r) (82—8)

4B Jooa {(ru—7) (8o—8) 4BT V’r.,—rz bd  +/8,—8 (4)
Oor Oor I:B(O'B"i‘ﬂ'r) a(°’3+0'r)]
dr d.’s dr ds
b_w o8 or U er(dst-dr)
ff' (r,,,—r) (8,,,—8) fj‘;" 2 -\[(T,,—T‘) (8,,—8) 2 ab -J(T‘w—?‘) (8,,—8)+
dri
gf (ca+o7) (ds+-dr) U (1+d3) (er—op)ds (45)
2 Jpoa 2 A e—r) (8,—9) e re—rs Jba  fs,—e

where r; is the wing-plan-boundary equation r=ry(s,). The
more complicated expressions, such as equation (34) and
combinations of equations (35), (36), and (37), can be
treated in a similar manner.

The expressions for the perturbation-velocity components
are simplified for flat-plate wings having slopes cp=—0r=c.
(These components may also be regarded as the contribution
associated with angle of attack on a cambered wing.) Equa—
tions (44) and (45) may then be written

d¢_ Ua (ds—dr) U drg) [s -—sl(r,)
dr 2Br J;b v (re—1) (sw—S)Tﬁw " ds, Tu—T2

(46)
and
%3 Ua (ds+-dr) Ua drs —38;(ry)
oy 21!'ﬁb Veo—7)(8—8) = (1 + ) \/ To—T2
47

The line integrals of equations (46) and (47) may be numeri-
cally or graphically evaluated by the procedures outlined in
reference 16. If the supersonic leading edge conforms to the
equa.t-ion s=-—Fk;r, equations (46) and (47) give

a*P <1 dry /Sm"“kﬂ'z (ky1-1) tan-! ky (i'm—fz)
\[ Tp—Ty k[ ST I‘-'l?‘z
(48)

_ga___Ua drz PN (k ) 1 fki(re—ry)
IK ) / rw—r: 1 tan I\ ;w-i-lclr:
(49)

Equations (48) and (49) could also be obtained by partial
differentiation of equation (31).

Along the subsonic leading edge, (r,—7:}=0and an infinity
occurs in the perturbation-velocity component of equations
(46) and (47). This infinity represents a breakdown in the
validity of the linearized theory, and corresponds to the for-

mastion of a stagnation point near the leading edge of two:
dimensional subsonic airfoils. Even though unbounded pres

sures may be obtained from equations (2a) and (46}, these
values should be interpreted as representing some fraction of

(Evaluation

free-stream stagnation pressure (or near-vacuum conditions).

As was observed in reference 23, discontinuities in wing-plan-
boundary tangents along subsonic leading edges lead to dis-
continuities in the z and y pertubation-velocity components

and in the wing loading along the Mach line from the dis- ___

continuity.

A physical consideration of pressure disturbances from the
wing-plan boundaries indicates that the velocity component
lying parallel to the edge must be continuous across the wing
edge. This concept is evident from oblique-shock relations
for supersonic leading and trailing edges and may be verified

by equations (20}, (46), and (47) for a class of subsonic lead-

ing edges. All changes in the velocity at the wing-plan
boundary must therefore occur in the velocity component
perpendicular to the edge.

Evaluation of suction forces on subsonic leading edges.—
Near the wing edge, the line integrals of equations (46) and
(47) are zero. Likewise, the direction slope of the perturba-

tion velocity is
drg
ﬁ ( dsw)=_<

a¢ dr2> _ (50)

o
where (ﬁ—;) is evaluated from the wing-plan-boundary
2

equation. The perturbation velocity is thus normal to the
wing-tip boundary and has the value

St GG [( ) e (i) ] oo

T8
T gy
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In accordance with references 24, 7, and 19, this type of
variation in g—;‘% as n—>0 leads to a suction force per unit

length along the leading edge of magnitude

dF, 4o (s,—s) [, o
L T4 . (52)

where F, is the force normal to the leading edge and dl is an
infinitesimal distance along that edge. If dl is expressed in
terms of ds and F is defined as the suction force in the flight
direction, equation (52) may alternatively be written

. dF_4pUe(s,—s) (. _drs\ [d,
,{;&T,,E_s-— AM? (173‘—9;) Jé

The suction force along subsonic leading edges can thus be
evaluated explicitly by equation (53) for wing boundaries
that are not influenced by interacting upwash flow fields.

(53)

Equation (53} has been applied in reference 19 to demon-

strate that appropriately curved plan boundaries may lead
to wings of higher lift-drag ratio tha,n do straight-line plan
boundaries.

Velocity potentials associated with discontinuous side-
wash.—If the upwash field lies in the wake of the wing (fig.
5 (a)), the integration function H(y) of equations (20a),
(212), and (22a) will not generally be zero (reference 15).
A discontinuity in sidewash will then persist across the
2=0 plane corresponding to the strength of the vortex sheet
trailing behind the wing. The function H may be adjusted,
if desired, to obtain solutions for the velocity potential that
will satisfy the Kutta-Joukowski condition along subsonic
trailing edges. This condition requires that for flat-plate
wings the perturbation-velocity components are continuous
across the trailing-edge boundary. For finite-thickness
wings the velocity components must be finite at the subsonic
trailing edge. The immediate problem is to. establish the
part of the veloeity potential on the surface of the wmg that
is associated with the function H(y).

The region Sp; of figure 5 that contains the vortex sheet
may be temporarily considered as a portion of the wing.
The virtual wing tip is then the y=constant line denoting
the junction between the leading and trailing edges. If
equation (29) is applied to the virtual wing-tip region Sp;:
of figure 5 (a), there results (in the notation of fig. 5 (b))

_ U apdrds (ea-t+omdr ds
o M‘ll'ff Swa '\/ (TD_T) (sD— 3) A'{Fff Suz 2 '\/(TD—'T)(SD_'S)
o+ Ag)dr ds —
H—fﬁnx N {rp—r) (8p—8) (54)

If this expression is compaled with equatlon (20a,), the

result is
N+ Ag)dr ds (ca—or)dr de
'ZI'IT [ffsb 1 '\/(TD—T)(SD—S) J‘f Sua 2‘\/(1"3—'1")(81;—'-3)
(55)
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In the notation of figure 5 (b), equation (55} may be written

50 (er—op)ds

--H=—MU;f, JGD_—T[L(’) 21/(8»—8)_[_
u()  ap—s

By use of Abel’s solution (references 14, 20, or 21), cqua-
tion (56) may be inverted to yield

[f‘!(r) (O’T—O'B)ds_l_ ip ()\0+}\5)d3]
s 21/39—3 40 \/sp—s

H (8” 2\ drp
'Jr—rp o

where H(y) has been expressed in oblique coordinates.
Equation (56a) may be integrated by parts to give an alterna-

tive form
[ J‘!:(f) (er—ap)ds +
n( 2.fsp—s

(56)

Ubr

tn _O\D+ lg) d8]=
3 (7) \/s p—8

 om,
MH©O) _M (735 (56b)
" UVr—sp U Jour—rs

The velocity potential at points on the wing influenced by
the subsonic trailing edge (fig. 5(c)) is
U 1(2)

- l: fa,(r) (cr—az)ds ja.. ()\o+)\5)ds]_
T Mx )., 1/?,,,——;- 40)  2v8,—8 @ Jul) Veg—s
U. faf‘u) dr f ul) (optor)ds
Mr, Vra—r Ju®) 245,—s
_Z‘.. Ty dr 50 Op ds
Mr Juen) [ro—r) Jutn) fs,—s

- _(57)

The second member of equation (56a) or (56b) may replace
the first member along lines of constant sp (or s,) that
extend across the wing. Equation (57) then becomes

1 J‘ r2(80) di" [9_ f )drn]
AT y—r or L") "[r —rp

fr!(.w) dr f‘l(’) (_G’B—[-O'T) ds _
V— 5 () 2 -\/310—3

U Tw dr ‘8 ar ds
Mr Jre.) \/Tw—rj‘x(") +8,—8 (5.8.)
This expression reduces to equation (29) if H is zero. Inas-

much as F may be arbitrarily chosen, an infinity of solutions
for regions influenced by subsonic trailing edges can satisfy
the boundary conditions for thin wings at supersonic speeds.
On the other hand, if the Kutta-Joukowski condition is ap-
plied, only one solution remains—the velocity potential that
allows the flow to leave the subsonic trailing edge smoothly.

(56a)
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Once the funetion H is chosen, equation (56a) may be
applied to evaluate the upwash (or M) over the wing edge.
The slope N has been considered as the sum of two sets of
slopes, one independent and one associated with H.

A=Xo+H Az (25)

Equation (56b) may then be written as separate equations
for X, and Az as

Nods

S‘_'(F) (_O'T_U'B)ds ; 3o _
ﬁl(r) 2'\-[3D_8 R 3,(r) /__ (2(&)
and
S'D—TD
[ 2ute__aro [ BCT)
50) /8p—s Udr)e  r—rp
oH ,
=_J_£ bru P_MHO oo
U /r 'p U’\.’lf’iSD

The bracket of equation. (57) could thus be replaced by the
first member of equation (59) if desired.-

The solution of equation (27a) is obfained from equa-
tion (27d). The solution of equation (59) follows from
Abel’s relation and may be written in the form

Mo [ a?‘f Vr—rp VdsD

E= _L—r‘n' Y] (r) ‘\«’[3_‘31)

(60)

This is the steady-state solution of equation (24), which could
have been obtained directly. If H(0)=0, equation (60)
may also be written as

0H i
MDD [+ _dsp (rorp%®
Ur 3s Jut) ya—sp ﬁ

Ag=— (60a)

b \r—rp

Substitution of A, from equation (27d) and Az from equa-
tion (60) into equation (25) yields the slopes of the upwash
streamlines in the wake of the wing (region Sy, of fig. 5 (a)).
It the region Sp, is treated as part of the wing, the slopes of
the streamlines in the region Sp: may be evaluated from
equation (27d). As in the derivation of equations (36a)
and (37), the influence of interacting upwash fields may
then be determined.

The velocity potential associated with H in equation (58)
may be written in either of the alternative forms

1 (b _dr 0 (T Hdrp 61)
PETx oo Jro—rOr Jo. Jr—rp
or
— Ei{dlf'
__._H(O} tan-! /7'2—3m+l frz(lw) dr T Qrp 2
™ \ Fp—rFy T Jéw ‘\‘lrw_‘r S '\-IT‘—T‘D

(61a)

where s,, has replaced sp as in equation (58). The question
arises as to the nature of the velocity potential and the
perturbation-velocity components that result from the
function H, which depends only on the coordinate . Two
approaches are followed to answer this question. The first
approach is to evaluate ¢y when H assumes the form of a
power series. (This approach is useful for explicit evaluation
of ¢ for wings with polynomial plan-boundary equations.)
The second approach is accomplished by direct integration
and differentiation without further assumptions on the form
of H.

The function E(y) =H ( Su

in a Taylor's series of the form

1—;9 ) is assumed expansible

Su— 80— 8,—Ip)? |
A (22 )=at MO BT 69

(Because H(0) is zero, a; will be zero for isolated wings.)
Substitution of H from equation (62) into equation (61)
yields for the velocity potential (see reference 15 for details)

Tog=2 63)

21‘ (n+1)T G-) @n(Su—T7w) "f(,w_, ,.d,,

& 7 (n-{—%) AT

where T represents the gamma function, v is an integration
variable, and 7, is a function of 8,. The integrations of equa-
tion (62) may be expressed as incomplete beta functions if
desired.

The z component of the perturbation velocity that is
associated with H may be obtained by differentiation of
equation (63) as follows:

drz
dpa_ M \ds,_ )E( b ”"‘“”(2) iy
o2~ 2Bx \re—rs Ly (n T )zm

The infinite series is a function only of s, for a given plan
boundary and Mach number. The coefficients a, control
the strength of the vorticity in the wake of the subsonic

()
The factor —V—=*

. Pop—Ta

r—8s)""%

64

trailing edge. represents an inverse
square-root singularity along the wing-plan boundary that
leads to an infinite pressure coefficient in the linearized
theory.

The x component of the perturbation velocity in regions
influenced by a subsonic trailing edge (fig. 5 (c)) is obtained
as the sum of equations (64) and (44) (with &, set equal to
Zero)
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(bm,- el dr ds

I:a (O'B"I'U'r) 3(0'13+0'r):|d’_ ds

U O’T(ds—‘dr) U (o'B-I-ch)(ds-—dr)

g: 2BTILW1V(Tw—T) (82—6) 4l3fffsw=

(1 _dsw

(or—og)ds_, 2M

’\/(Tw—r) (801_8)
S () T+ DT (3) 0y (e

2311' ab '\/(rw_r)(sw_s) 28w b°d2\"(rw_r)(sw_‘3) .

+
g | WY o9
For flat-plate wings, sz=—or=a and equation (65) becomes o
dr o« n 1 n—
d¢_Ua f (ds—dr) Ua<1 dsi) M (—1)"T(n+1)T (‘z‘) an(rs—sa)4 ()
0 2r ) ) Ge B | Br Nramry | VTR0 TG 2 r(ntg) b
or
o¢_Ua j' ds—dr (1_ g (SW) (662)
oz 2f7 Ja» J(rw—r) (Sw—S) ' Tp—"s
where g(s,) represents % times the bracketed part of equa- = (—D*T'(r+1)r (2) @
—81(7‘3 —'_U_ pzn_l (68)

tion (66). The quantity ( 1 —.g’g—z) g(s,) is constant along lines

of constant s,, so that the strength of the shed vorticity
could feasibly be experimentally determined by a single

pressure measurement on. the wing surface for each value

of 8.

If the Kutta-Joukowski condition is to be satisfied for
antisymmetric wings, all three of the perturbation-velocity
components must be continupus across the subsonic trailing
edge. Continuity in any one of the three components will
evaluate the coefficients a, and assure the continuity of the

other two. Continuity of %;3
edge for flat-plate wings, covered by equation (66a) for
example, requires that g(s,)=0. The solution that satis-
fies the Kutta-Joukowski condition is thus

d¢ Ua ds—dr (67

across the subsonic trailing

— r ('n. %) Vi
where p=yr:—s, Equation (68) is a power series in p
whose nth coefficient a, may be evaluated in terms of the
(2n—1)th derivative about #=0. Because the first member
of equation (68) is finite when p=0, a,=0 as previously
stated. . Differentiation of the first member of equation (68)
can be accomplished by successive applications of the relation

— d_ 2+rg—8, d '
CTZ’—- Fa as—w (69)
ds,
By application of equation (69) and L’Hospital’s rule to
equatmn (68), the coefficients a; and ay, for example, are
given as

ﬁ=_2_ﬁ_1r. ab + (rp—7) (8, —8) .' ay=—Ue (70)
The coefficients ay, @2, . . . a, may be ovaluated by .t.he
relation g(s,)=0, or for ﬁa.b-pla,te wings, evaluated at-r.=28,=0.
a __ZL{UO! dsl dT'g % dzi"g [(drg_l) (iirg_l drz 1) _
) T drads,) ds? | \ds,
.Z‘f Ue dsl drg d’sl d?"z d81 d27'2 drg_ 'i' drg i’ ( dsl drg):l
T2 ( " dr ds,,,) dr \ds,, +dr, ] [(EZE, 1) ds. 1) 1- drs ds, (71)

evaluated at r;=8,=0. The other coefficients may be similarly evaluated. If wings with straight-line plan boundaries are
considered (as for conical flow Wings) all the coefficients a;, az, @3, . . . Gy except the first are zero. For curved plan bound-
aries, hlgher-order terms in the series expansion for H are generally required to satisfy the Kutta-Joukowski condition. The
expressmns (70) and (71), which determine the first two coefficients in the series expansion (equation (62)), are unbounded if

ds 2 approaches unity at the origin.

Once the coefficients a1, @,, as, . . @, have been determined, the velocity potential and its partial derivative with
respect to z are given by equations (63) and (64), respectlvely The y component of the perturbation velocity is obtained
by partial differentiation of equation (63). _
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The 2z component of the perturbation velocity associated with the function A may be obtained by substituting equa-

tion (62) in equation (60) (a;=0):

UNoz/x ™ Ur(s—s)t| arx arxe X‘)

21r lo Jr—gtVs—& [ a 2a2(r—s) 3a,
Ur Oe Nr—8 M Ad2 1.[3

4 (s—sﬁ(r—s:)*{ﬁ%zfl {‘;,3X2X1[(r—sg Lidx

3,1
5X5

o]}

a¢) —hg— Af |:a1(r—sg)* a«2>(1(r—s,)1ir aa3><2><1(r——sg)1ir
A3 X X X
2

:I_

—er— g et |+

&—@]+

l\DI =t

a; 4X3X2X1 [(r—ss)’

r 7 T
\ 5X3X‘, 3 3X

2 =) r—9) 2>< (r—s)z:l
3X2X1 |~

7.,5.3

ir 5.3.1 4 4X3

a5 5X4X3X2X1 [
,X X5X35

The terms factored by a;, @3, @4, - . . a, do not appear for
wings with straight-line plan boundaries.
_An alternative approach to the determination of the form
for the perturbation-velocity components associated with the
function H may be obtained by integration and differentia-
tion of equation (61a). This manipulation is accomplished
by interchanging the order of integration with respect to r
and rp, which of course alters the limits of integration,
giving

§ —H (0) -1 Fg—S8u

o= tan ,/ r —rg+

73(2) DH r3(8) dr
e [ e O
or
__2H(0) L, [ra—8, . 2 [mG)OH, _, [m—rp
er="" tan 1\/ oty 7 Jo,  Orp o0 1\/ p—

(61c)

Equation (61¢) may be integrated by parts to give the alter-
native form

_ \Tg—Ty f”z(‘u) i Hdrb
BT s, (re—rD)ra—To

61id)

Thus, either by equation (81c) or equation (61d), ¢z is
evaluated by a line integral across the vortex field along the
constant &, Mach line.

The z and y components of the perturbation velocity may
be obtained by diffcrentiation of equation (61c).

!%_ )
w (ry—ry) (rs—8y) 7 —r, E)rD rpss,,

2 rl(‘w) - rz—Tp )
EJ:,, (brw'l'bs.,) ar,, Len \/ E—_rz) drp (73)

4X3X2 4—X3X2X1

_ (r—s)’(r s) X (r—sg)(r—s)? X X (r—s)3
(r s)s 2 2 2 2 :I }+ (72)

H equation (73) is rewritten, with the use of the identity

(24 2)2 2K
br,, bs,, drp  Orp
there results

d)'g
26 O¢m 2O ) —= ta “

I a‘c T‘/(r.,—-r,) (rg—sw) T

—'7'2 (bru fD"u;
ni) dH /£ O 0 -1 [T1—Tp
f a"D (arw-{-a_sw tan l\ ry—7ry er—

4 r’('ll) D’H _1\/1’, p d)‘
. D

T Js, dr 2 Po—

(73a)

Integration by parts of the fourth term in the second member
of equation {73a) leaves

H(©) (‘ﬁ —~ 1)

2,33 +
¥y b:c \/(T‘w—rz) (rﬂ_sw)
n(.) 0H _, fra—r
2 S Gt tary) o ‘\/ —nl
or

dr ars oH
d0x_ " \ds, 1) H(©) | (aepdrp Y|
+ 209 5= | (73h)

¥ 2Bara—r; L Vri—8s ' Jr. NPT

(The series of equation (61) may be obtained from equations
(73b) and (62) by successive integration of equation (73b)
by parts.) In a similar manner,

o (% +1)

2 dpg_ 2H(0) Jro—ra
.rl.{ ay Ty (r,,—rg) (T’ —81‘;) _‘ﬂ'(rw_‘su:) ‘\[rk_sw

73 (80} OH Pe ] o — re—7p
j;.. o I:(asw ~orator;) B V= 4ro

(74)



or

d?"g . ’ aH
oex N (1+ds,,,)|: HO) | fr,(aw) oy d"D}_

by 2 Vro—7s LVr—8s J%  r—rs

. oH

11{'\/'7',,,—7'2[ H(O) +fr2(“w) arp o }
™ (ro—8u) Vrs—8u  Jtu  (ro—rp)Yre—7>

(74a)

Thus the perturbation-velocity components (associated with
H) on the surface of the wing are given by simple line integrals
across the vortex field along the constant s, Mach line. For
a given wing plan, the line integral of equation (73b) {and
the first line integral of equation (74s)) is a function only of
the shed vorticity and of the coordinate s, (as was similarly
noted for equation (64)). The form of equation (73b)
suggests that the equation might be more general than the
example for which it was derived.

If the Kutta-Joukowski condition is to be satisfied along

the subsonic trailing edge, the value of ?I that appears in

equations (60a), (61a), (73), afid (74) must satlsfy the 1ntegra1

equation
oH 4. _
H(O) ra{8.) ar_p U (O’B G'T)ds (75)
ra—tn St Are—1s TM Jva 2 fsu—s

where o depends on r:(s,) and s. This expression results
from adding the terms of eq;ia_,_tions (44) and (73b) that give

infinite values of g—‘: along the subsonic trailing edge (that is,

those terms that contain the factor_(-d%— 1) / 1/7'«,—-1':)

and equating these terms to zero. An alternative evaluation
of H may be obtained from equation (22a) and the known

values of ¢ or g_q, for solutions satisfying the Kutta-

Joukowski condition

2H=gr—ps— [ 0 Ber_ a“’")d (76)
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If in equation (76), ¢r and ¢p are divided into those com-
ponents associated with and independent of H (as in equation
(58)), only the part associated with H remains after the
subtraction. The paxt associated with H is zero from —

(73b) and_ (75})

drg 1)
a?E d'gw
oz 2;311-\/7',,— Ts

(UB—O'T)dS
bd 2+/s,—8

@)

from the s,=0 Mach line to the subsonic trailing edge.
(The 4 or the — sign is used for the top or bottom wing
surface, respectively.) Application of the transformation
equations (16) for constant values of ¥ (which infers that
dry=ds,) to equations (76) and (77) then gives

M., o, dry )
55 @t \ 7.-—1) dsy ,, _
H_ U fm t (dsw ﬁ w (O‘B O'T) ds (78)

~Mr o V8u—My—ry Julr) 24/8,—s

where 2; represents the plan-boundary equation z=um;(y).
This value of H may then be inserted in equations (60) and
(74) to complete the evaluation of perturbation-velocity
components associated. with the discontinuity of sidewash
behind subsenic (or supersonic) trailing edges.
Acceleration-potential derivation of solutions satisfying
Kutta-Joukowski condition.—Additional insight into the
origin of pressure forces may be gained by deriving the
expressions for the influence of the upwash field in terms

This deriva-

tion may proceed either from equation (42a) and figure 4 (a)
or from equation (44) and figure 5 (b) under the assumption
that N\ is finite along the wing boundary in conformance
with the Kutta-Joukowski condition. Both derivations
yield the same result, but the second approach is simpler
to justify If equation (44) is applied to the virtual wing
region Sp; of figure 5 (b) for both top and bottom surfaces,

of the acceleration potential g—;f rather than e.

! there results

O(op— o'B) o (a'T oa)

br+m ds (0'8—0’1')1<(%—1) "

a(‘PT e8) _ () or
Zﬁrf Jw—r{.ﬁ:(f) . \/

(or—ap)a <d82— 1) 20 (is—z—— 1)}

Veu—8(7) V8u—8 (1)

e, -

V8, —s8 Ve, —8 (1) =+

(79)

The last two terms arise in the evaluation of the surface integral from the discontinuity of streamline slopes along

the t.raﬂm.g edge.

Inasmuch as equation (79) holds for all values of r,, there results

a(o's—ﬂ'r) O(op— G'T):Ids (rr—o2) dsl )
+ T_ B/1

op—ar)s (ds’ 1)

oM dSz
J‘aw br +bs ds A 1)
8()  sp—s wlsw—s,(r)

J"z(’) 2 l
nn Vey—28

(79a)

-\/8,,,—81 " 248,—a0)

(If equation (27a) is differentiated partially with respect to r and sp, addition of the two resulting equations gives

equation (79a).

Inasmuch as equation (27a) excludes the effects of shed vorticity whereas equation (79a) does not,
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the inference may be drawn that eguation (27a) could include the effects of shed vorticity for time-independent .

cases by the add1t10n of a function of r—sp.
to figure 5 (c), Sz ¥ on the surface of the wing is

aﬁ' aﬁ' drds

gf_*%rfs. 1oy (Tu“—T) (s,,——s)
[a(a' +a'r)+a(0'3+ﬂ'r)]drds

255 Jou

U (s dr

"(7‘,,-—-7') (8,,—'8)

U oer{ds—dr) U
257- b/ (ry—r) (8,—8)

This fact was shown in another manner in reference 15.) With reference

(cptor) (ds— dl‘)
" 2B oo 2/ (ra—r) (80—9)

[*

287 jea 2(n Ny Vs

-\7',,—-2"'
Elimination of A from equations (792) and (80) gives

bO"T aO'r
20_ f f + Y )d ds
or 26r) Jsun 4 (r,,——r) (u—8
1 (0'B+ ar) a("""l"”').ldrda
)B"rfj"su 2 f(r,,,—-r) (82—8)
O'T(ds dr) _
5o T e
_U_ (oa-+or) (ds—dr)
287 Jo0d 24/ (ry—1) (8,—8)
Equation (80a) is the same as equation (65) except that the
term generating infinite loads along the wing-plan boundary
is missing. Thus, when the brace of equation (85) is zero,
the Kutta-Joukowski condition applies and equation (80a)

results. The vorticity in the wake of the wing under such
circumstances is of sufficient strength to cancel the contribu-

(802)

tion to g% of the line integral slong bd.

Three approaches have been presented to show that the
Kutta-Joukowski condition can be formally satisfied along
subsonic trailing edges of thin wings at supersonic speeds.
Each of these approaches implies a discontinuity in sidewash
(that is, & vortex sheet) behind the wing of sufficient strength
to cancel the term in equation (44) evaluated by the line
‘integral along bd. This term appears to depend only on
those wing slopes lying on bd, which can only influence the
flow field along or downstream of this Mach line. On the
other hand, the contribution of the function Z, which opposes
this integral for Kutta condition solutions (equation (75)), is
determined by the discontinuity in sidewash established
upstream of this Mach line (except for the isolated point d).
The implication is that the Kutta-Joukowski condition
cannot be satisfied without an interchange of cause and
effect. Once the flow is established, however, the boundary
conditions may be satisfied by solutions fulfilling the Kutta-
Joukowski condition. Application of the Kutta-Joukowski
condition would seem to imply at least one of the following:
(a) Downstream disturbances might be felt upstream through
the wake of the wing or through the boundary layer whether
initially or continuously. The apparent interchange of
cause and effect in the linearized calculation would then be
negated; (b) only the vortex line from the point d contributes

936646—51——7

o [ . ), G 0]

»—81(7)

Ve, —s ’s,,—s,(r)

to gi along the line &, (This argument seems to be in opposi-

tion to equation (73b).}; (c) the wing slopes must change
continuously in approaching the line bd (as they would if
they were represented by a power series) so that the apparent
independence of the line integral of forward wing slopes
might not be real. The application of the Kutta-Joukowski
condition at supersonic speeds is still an open question,
which should be determined by experiment.

In order to illustrate the Kutta-Joukowski solutions, the
perturbation-velocity components of a thin, flat, trapezoidal
wing with & subsonie trailing edge on the tip may be derived.
The wing equations are s=~—4k;r and s=kyr. Either by inte-
gration of equation (67) or when the singular term of equa-

tion (48} is dropped, gf may be derived as

d¢_Ua (bt 1), [(arv—ss)
dz Br tan™* Ekr{"kz)-?w ®

(Equations (78) and (73b) also lead to equation (81) for this
example.) From equation (70),

This value may be inserted in equations (62) and (63).

Addition of calcula.ted from equation (63) or (74a) and

g% from equatmn (49) gives

a(a Z:'Ol (1 Az) tan-! kl(kzrw"’sw) .
= w L vh MV Gatkoe.
kl T [fz - sw(l ""kl)
\/ 1\/ ) 82)
Likewise, from equations (72} and (27e},
-1 Qg_*_ [t _1\/r(k1-rkz) |
Udz R——[Czr T
Btk Jr—s
Vik %% it rO—F) (83)

for

B <L
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The values of the perturbation velocities, equations (81) to
(83), are constant along radial lines from the origin showing
that the flow is conical. This fact resulted from the use of
straight-line plan boundaries, but was not otherwise assumed
in the derivation of the perturbation-velocity components.

Circulation and lift—As in subsonic-wing theory, the lift
per unit span is directly related to the circulation, as shown

in reference 25. The lift increment per unit span oy is

given as
dL__ 1

=3 U (C.a—Cpn)de

——pU f_, (a“’” a"f) dz (84)

where the subscript ¢ indicates along the trailing edge. In-
tegration of equation (84) gives

dL

Gp=—rUlea—or)i=2UHG)=pUT (340)

where T is the circulation evaluated along a wing chord.
Equation (84a} is the familiar subsonic relation and may be
used to evaluate experimental wing lifts from wake measure-
ments, or to evaluate the theoretical lift of a wing as a line
1ntegra1 across the span. The velocity potential along the
trailing edge is, of course, a function only of y, z having been
eliminated by means of the trailing-edge boundary equation.

Computed examples of perturbation-velocity compo-
nents.—The theoretical expressions for the velocity potential
near thin wings at supersonic speeds describe the flow char-
acteristics. The nature of these flows may be clarified by
numerical examples for flat-plate wings. The perturbation-
velocity components in regions influenced . by the tip
of a trapezoidal wing are computed to illustrate the effects
of subsonic leading and trailing edges. In addition, load
distributions associated with angle of attack, uniform pitch,
and uniform roll are illustrated for a complete wing.

The effects of subsonic leading edges on the perturbation-
velocity components may be illustrated for the trapezoidal
wing of figure 13 (a). The supersonic and subsonic leading

edges are defined by the equations s,_=—% and s;=2r. If

these values are substituted into equations (48), (49), and
(27e), the perturbation-velocity components in the z=0
plane are obtained. These components are presented in
figurs 14.

The two addends that give g and gy are also included..

on figures 14 (a) and 14 (b). The arc-tangent expression
controls the value of these two velocity components near the
Mach line from the subsonic and supersonic leading-edge
intersection, but the inverse square-root singularity becomes
increasingly important near the wing tip.

0 .
The value of a_;: rapidly changes near the innermost Mach

line from the origin, reaches an extreme, and then becomes

unbounded near the tip. _ " The quantity gy’ on the other

hand, changes monotonically from a positive value on the
innermost Mach line to an unbounded negative value along

the tip. The value of & (fg. 14 (c)) is likewiso unbounded
in the upwash field in the vicinity of the wing tip, but rapidiy_
drops as ﬁ?y increases. The upwash is zero along the outer-

most Mach line from the origin.

(b)
{2) Subsonic leading cdge.

(b} Subsonle trailing edge.

FIGURE 13.—-’1‘mpezoidal-wipg plan forms,
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FigERE 14.—Perturbation velocities near tip of trapezoidal wing with subsonic leading” edge.
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Fiourg 14.—Concluded, Perturbation velocitles near tip of trapezoidal wing w1th subsonic leading edge.
If the trapezoidal wing is flown backwards, the equations
for the wing boundaries are &;=—2r and s,=0.5r.

In this
case the wing tip is a subsonic trailing edge for which the
Kutta-Joukowsk1 condition may be (arbitrarily) imposed.

The three per turba,non-velocmy components, which were

terms of the wing slopes o.
calculated by equations (81) to (83), are presenfed in fig-
ure 15.

velocity by equa,tmn (19).

LO L

Many of the equatlons presented heretofore are g1ven in

These slopes, however, are
related to the induced z component of the perturbation

The formulations are cgually

Both a'p and. 5%’; monotonically”change from the two-

dimensional regions to the wing tip. In the upwash field

valid when w is induced by either steady wing motions or
by wing geometry. The effective wing slopes on a flat-plate
wing mssociated with lift, uniform roll, and. uniform pitch
are, for example,

lift:

\

op=—u cg=a
roll: . _

w m m

<ﬁ y<0 3 1s Zero a,nd — 1s constant, corresponding to r=T0UT U (7 —m0) BT (1—m0) }' (85)
pitch:
a constant strength of vortlclty in the wake of the wing w n
' . or=—p=—77 (—&)
The velocity component 5—‘: is constant across the wing, then

monotonically increases in the upwash field from the value

along the wing tip to infinity along the line By

or=7; (t— &) |

sponding to the limiting vortex liné)

where m and n are the rates of roll and pitch and 5, and &
are the coordinate distances to the roll and pitch axes,
respectively. If these wing slopes are substituted in equa-
tions such as equation (44), the load distributions associated
with lift, steady roll, and steady pitch may be determined

- =0 (corre-
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Fi16TRE 15.—Perturbation velecities near tip of trapezoidal wing with subsonie trailing edge.
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F16URE 15.—Conciuded. Perturbation velocities near {ip of trapezoidal wing with subsonic trofling edge,

The following table lists the type of equation that could
be used to evaluate the velocity potential and the = compo-
nent of the perturbation velocity for each of the wing
regions of figure 16:

Wing Equation for velocity Equation for g—g (Kutia-Joukowski condition
reglon botential imposed along subsonic trailing edges)
I an (42) -
I [¢::) -] 49
pueg (58) or (28) and (61b)-..._....| (67
IV | B e emeam Not presented. Equation is similar to (44).
v (34) and (61D) o e ooeeaee Bame as region IV, except term of form

(34) and (61b) applied to both
subsonic trailing edges.._..

{73b) from subsonic trafling edge is de-
2 1Y S -
Bame as region IV, except both terms of
form (73b) from {wo subsoniec irailing
edges are deleted

The calculations of reference 17 directly applied the equa-
tions for gi; to obtain the load distributions.

The load distributions associated with lift, roll, and pitch
for the wing of figure 16 are presented in figure 17. These
distributions (reference 17) are shown in contour-map fashion
giving lines of constant loading. The dashed lines are
either the rolling or pitching axes or the Mach lines origi-
nating at discontinuities on the wing-plan boundary.

The wing loads associated with angle of attack (fig. 17 (a))
approach infinity along subsonic leading edges and are
zero along subsonic trailing edges. The lifting pressure
coefficients are conical in the forward central portion of the
wing, generally decreasing toward the rear. The loadings
are negative on the rearmosi portions of the wing. This
reversal of lift results from the pronounced effect of the
upwash on the downstream parts of the wing.
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As in the case of the lifting wing, the loads associated with
uniform roll and pitch (figs. 17 (b) and 17 (c), respectively)
are infinite along subsonic leading edges end zero along
subsonic trailing edges (to satisfy the Kutta condition).
The lines of constant load distributions associated with roll
(fig. 17 (b)) are nearly parallel to the roll axis on the forward
central portions of the wing. Considerable distortions are
evident toward the rear, with pressure islands occurring.
Positive pressure coefficients appear on the front and back
parts of the wing, with negative values between.

Y
%
B

FIGURE 16.~Form of wing analyzed. M=+y2.

The load lines associated with pitch (fig. 17 (c}) are roughly
parallel to the pitch axis for the central regions ahead of that
axis. Pressure islands occur at the rear of the wing. An
interesting observation is that the loadings associated with
pitch change sign ahead of the pitch axis.

The force distributions of figure 17 may represent the
loadings of & variety of wing-plan boundaries. The wing
plan may be altered or modified along any shaped supersonic
trailing edge without altering the loadings in any region for-
ward of that edge. Likewise, if other axes of pitch or roll
are desired, the new loadings may be obtained by super-
position of values shown. If axes 7, and & are desired,
equations (85) become
roll:

or=—Tp (—m)=—T (1—1) — 7 (ro—1)

pitch:
n n n

or=—77 (t—&) =T (t—&) -7 &—&

The shift in the axis (7,—";) thus superposes & lifting load
distribution for a wing at angle of attack equivalent to

% {7,—m) on the originel loading associated with roll.

HI—TIME-DEPENDENT FLOWS

The concepts that yield steady-state solutions for the
velocity potential of finite wings at supersonic speeds may
also be applied, in part, to time-dependent problems. The
evaluation of the upwash field at a local point, however, is
complicated by the fact that a knowledge of the wing-slope
time history is required. If the wing slopes do not vary too
rapidly with time, approximate solutions may be obtained
that nearly satisfy the boundary conditions in the plane of
the wing. The theory is illustrated for a linear variation with
time of the wing slopes, which gives an exact solution.

Evaluation of isolated regions of upwash off subsonie
leading edges.—Equation (23} may be written for the wing

of figure 4 (a) as
f’pf-’n Ae,p dr ds f"nf’z(f) (cp—or)esdrds
0 Jam Jrp—r(sp—8) Jo Jum 2+/(rp—1) (sp—8)

For steady-state solutions the slopes ¢ and )\ are inde-
pendent of rp; the integration of equation (868) with respect
to s is therefore independent of rp and the reduetion to the
first-order integral equation (27a) is permitted. For the
unsteady problem, the slopes & and X of equation (86) are
functions of the time delays . and 75, which depend upon
rp and sp, and the value of the integration with respect to s
depends explicitly on the value of rp. The reduction of
the second-order integral equation to a first-order equation
by equating the integrations with respect to s is therefore
seldom justified. No published closed-form solutions of the
second-order integral equation (equation (86))} are known
for arbitrary wing slopes, but approximate solutions are
obtainable.

If the wing slopes generally are evenly distributed, those
slopes near the forward Mach lines (represented by
(ro—7) (sp—8)=0) will carry the most weight in the evalua-
tion of the second member of equation (86). Near these Mach
Iines, however, the nonlinear time delays of equation (18}
become nearly linear with respect to either r or s and the
two time delays 7, and 7 are nearly equal. This fact
suggests that the slopes appearing in equations (86) may
be expanded in a power series in terms of the variable

f=H2B—c J@p—r) (sp—8). The subscript @’ may refer to the

slopes or the derivatives of the slopes evaluated at f=0,
which is the same as applying a time delay of

(86)

rp—17nr
Tar=—
Be

8&p—$8

Be

+

87
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-

rar Lift distribution.

FigURE 17.—Load distributions assoefated with several tyyes of wing motion.
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(b)

sRoll axie

.
,

(b) Load distribution in steady roll.
FiaUre I7—Conlinued. Load distributions associated with several types of wing motion.
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(c) Load distribution in steady pitch.
F1gURE 17—Concluded. Load distributions assoclated with several types of wing motion,
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(The notation 7, will also be employed for point (ry,s:)
rather than (rp,sp).) The expansions for ¢ and A for the
two time delays r, 2nd 7, have opposite signs attached to the
odd power terms in f. The odd terms therefore disappear
when the two series are added

1 a (O'B O-T)a'

(O'B—O'T)a a—2|:(0'3 ‘72')11"[' f2+
411 __a (op—on)er 54y ] (88)
Moy =2 (J\a, o L g Dt ) (89)

If the wing slopes do not vary too rapidly with time, the
higher-order terms of equations (88) and (89) are negligible
compared with (¢z—or)er and A,. This approximation is
equivalent to assuming that the slopes change linearly with
time in the interval 7,—r,=2f. This approximation simpli-
fies equation (86) to

where the wing slopes (¢5—o7) of equation (91) are evaluated

at times {— 7.+ and
s—v
Ta'r —W (92)
In the analysis that follows, the approximate value of A
from equation (91) (which is the exact solution of equation
(90)) is applied as if it satisfied equation (86).

Aerodynamic effects of isolated subsonic leading edge. -

Analogous to the steady-state equation (28), the contribu-
tion ¢p of the upwth field Sp to the velocity potential on
the surface of the wing in figure 4 (b) may be computed by
equations (17) and (19) as

S )\a,b dSD

U (rnea dr
_2.;1.[1'1; -\I(T,,—T) () -\[8,,'—80 ©3)
L}

op=

The streamline slopes X, are evaluated for the point
(r, sp) at times {({—7,) and ({—7;). On the other hand, the
evaluation of X in terms of wing slopes by the approximate

equation (91) includes an additional time delay of spﬁ:s_
f f = f ’Df n e d s The combined time delays become
(1 \’(rp——r) (sp—8) 8 2+/(rp—r) (sp—3) J
) Sp—8 , Fp—1 2
(90) Te= Be + 8e +A_[ﬂc'\[(rw_r) (8w—8p)
A solution of equation (90) that in form resembles equation §u—8  Ty—r 2 (94)
(27d) is =g + 5o —:uﬁc\"(r,,,—r) (Sw—5p)
— 1 % (cp—07) e /S2—2 d2
Mrysf)= T8 —8, f:; (s—n) 1) Substitution of equation (91) in equation (93} then yields
__ U 73(%u) dr L dsp () vJss—s(ea—or)z; ds ©95)
=" 37

+V(rpy—r1) Jul)

¥ (8p—8z) (8u—8p)

8{r)

§p—8

The order of integration with respect to s and sp may be interchanged in equation (95), so that the potential ¢, may be

represented as an area integration on the surface of the wing:

2,(r) _\[—_3‘

_ 72(%w) dr
L™ ¥ ﬁ Jro—1) Ju®
If the approximate equation (95a) is combined with the con-
tribution to the velocity potential on the top wing surface
(exclusive of the upwash field), as calculated by equations
(17) and (19), there results

(o7) g, dr ds _ Qdrds
T oMr f f St fT—1)(s5—5) 28x f f S0 A/ (Pu—1)(80—9)
(96)

where

Q= (o) a0t V6a—9) &— )

(ce—or)z3 dsp
2% & (sp—8)V(8p—83) (Su—5p)

97)

(Because A becomes unbounded along the subsonic lead-
ing edge, the exact time delay is employed in equation (93)
even though M is given only approximately by equation (91).
This choice also matches equation (96) to the exact solution
of Garrick and Rubinow (reference 11) along the s,=0 Mach
line. For many problems involving slowly changing wing
configurations, (¢r)c; and (er—or)z3 0f equations (96) and

(O’B—O'T),—_; ds_p

f'l(’) (sp—8) v/ (sp—82) (Su—S$p)

(954)

(97) may be expanded in series form similar to equations
(88) and (89)

(or)ap=2(cr)oer+ . . .

(G'B—D‘T)E.'E=2(O'B—0'r)a'+

The value of @ then becomes @Q=(ss+or)er and the velocity
potential, equation (96), simplifies to

_ (0'1!)‘;' dr ds (O’BTO’T),;I drds
T Mx f f Sas VoD (50—s8) Mr f f Sui2 2+/ Py—1) (8,—8)
{96a)

Equation (96a} illustrates a theorem that for moderate
time-dependent wing motions, steady-state equations (see
equation (29)) may be employed if the steady-state wing
slopes are replaced by time-dependent wing slopes utilizing
a time delay of

To—T , 8p—S$

=g " fo

Equation (96a) gives exact solutions (linearized theory) if
the wing slopes vary linearly with time.)
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A simple example in which the angle of attack of all wing elements of a flat plate varies linearly with time (reference 18)
illustrates the equation. The wing slopes may be expressed as

sp=a+mi=—ocr (98)
These effective wing slopes may correspond to 2 constant acceleration of mU in the z direction of 2 wing at angle of

attack «. Substitution of equation (98) in equations (96) and (97) (or equation (96a)) and conducting the manipulations
for a wing whose leading-edge equation is s;=—Fkyr give

_2U¢ m m (1 5 m b\ —
sﬂ—mil:a-l-mt—li—ﬁc (by 1) rotg; (E —-?;) 5ot g5 (1—51) r._,:l o=t Gt Frn) +

1 (B +Dmkr,t8s)? _y Jkifre—rs)
,—fk—l[(a—{-mt) eyt ot80) — 2 4'30];1 ] an ‘\ _—;,,—{-Icrr: } (99)
Substitution of equation (99) in equation (2a) evaluates the pressure coefficient as
2 k 1 k-1 ky(ro—
C'r= -—ﬁ { Ur'u"[' (gﬁcklz) \I(ru:'—rﬂ) ($wtkurs) +T—'{ (k1 +1) (a-+mi) +meyrots.g) [U.ZL[ ¢ ;;;kl) }tan_t‘\ (;,(.r-l——lq::g
otk
[t m) 2 rumr— g Gl | (1ot )2 (100)

where r, is evaluated at s=s,. The steady-state solution (equation (45)) results if m=0. The load distributions of &
family of wing-plan boundaries is obtained by choice of the equation r=ry(s,). The solution for the infinite swept wing

results when s,=r(s,)=0. Inasmuch as the higher-order terms of equation (88) are zero for this example, the solutions

given by equations (99) and (100) are exact.

Calculations of perturbation-velocity components.—As in the time-independent cases, expressions may be derived from
the approximate equation (96) for the perturbation-velocity components. These components are obtained in a manner
similar to the derivations of equations (44) and (45), which are presented in appendix B. Direct computations of the
perturbation-velocity components in oblique coordinates yield

a(O' T)a ]
2o _ f f B dr do f f rds g (0r)an ds U Q ds
or,  23Ir) s (r,,,—r) Go—s) 2M=} Js | (rw—r) (8o—38) 2Mx Jab V(ru—r) (85—8) _2ﬂf-n-j;od re—71) (5u—8)

U [(0' )u, _Q] ds
ST o W [ Yy o1
Q 3(0',-),,
20 _ ff dr ds [f —STed dr ds 7 —lepepdr U —Qdr
os, 23x} Js, 1/(r,,—r) ($2—8) T 2Mr) Js (r,,—r) (so—8) 207 Job J(ry—1) (s0—8) 2M= Jvoa /(r,—7) (6,—8)
U 0 [(omes—Ql ds -
2Mr Joa .\/(rw-—-r) (s,—8) (102)

where the differentiations with respect to » and s are conducted with (rp,—r) and (s,—s} held constant.

The evaluation of ¢ is especially simple for the line integrals along bd, because only the point d is common to the line
bd and the upwash field so that s,~sp for the evaluation of the wing slopes. The quantity (¢z—or)z 5is thenindependent of
sp and can be taken outside of the integral in equation (97) to give

@=(07) e+ (ea—0or)z (for sp=:8y) (103)
where
_Se 8 T T2 (8w)

=g Be (104)

Tar




AERODYNAMICS OF THIN FINITE WINGS AT SUPERSONIC SPEEDS 99

Equations (101) and (102) may then be written

Q b(err)a b
2o _ ff dr ds f f, dr ds 7 f (Gr)as d8 f Q ds _
dr. M=) Js Wrw—r) Ga—s) 23x) Js (r,,,—r) (6o—8) 27 )b J(r,—1) Gu—s) 207 Jwa V(ro—7) (5a—9)
U —‘(0'3—'0'1')2' dS
XY el Joo—s (101a) )
and
dr ds b(a,-)‘. ¥ drds
E 2Mar f f (r,n—r) (Gu—s) 20w f [s: + (r.,,—r) o8
drg
U I‘ — (o) s dr f —~Qdr Vs, (o3—0or)ads (1022)
D Ix Ju V(ro—n) (6o—9) 23 Jooa \(r—1) (6g—3) 2Mrro—r2 Jué  ou—s co

The 2 component of the perturbation velocity is calculated from equation (15)

dp M dp
se=25 (o tse) 105)

When equations (2a), (105), (101a), (102a), and (96) are combined, there results for the pressure coefficient on the top wing
surface

Q 26 aQ a(‘TT)ab E)(a’ )ab 28 a(o'r)a
oo 1 ff ar s t3r0 e ) s ff[ LR TR vis e Gl
LT /(rw—r) Go—s) 267 ) Js: V(ro—T) (85—8)
dfg )
_I_.J‘ (G'T)a.b(.ds_dr) _l_lJ‘ Q(ds_dr) + dsw f (G'B_U'T)a'ds (106)
287 Jab A (ru—r) $u—8) = 287 Jood v/ (ra—1) (s0—8) ' 2B7Ty—rs

where the partials with respect to » and s are evaluated with (r,—) and (s,—s) held constant. One way to perform this
differentiation without error is to replace % with (r,—7), 8, (s,—8), and ¢ held constant by ( %-{-a%) with all of the

variables except the one of differentiation held constant, and so forth. With this innovation, the operator ( %-{-%—[— %g—t

of equation (104) becomes (;’_)‘4_5%_’_%_'_%_]_3_2%% .

The approximate solution for the pressure coefficient that satisfies the Kutta-Joukowski condition along subsonic
trailing edges is equation (106), except that the integral along the line bd is deleted. This conjecture has been
demonstrated for a linear time variation of wing slopes in reference 26. )

Lewis FLiGET PrOoPULSION LABORATORTY,
NationaL Apvisory COMMITTEE FOR AERONATUTICS,
CrEvELAND, O=IO, June 17, 1949.



SYMBOLS
The following symbols are used throughout this report: I
Qo, @1, g, - . . 4, coefficients of power series expa.nsion of
Hy)=at+ayt+ay® . @
(4 pressure coefficient, p p 0 ?'
') pﬁzj2 A
¢ speed of sound
F suction force in flight direetion
F, suction force normal to wing edge
f function o
9 g
f = ;ﬁfﬁc v (rp—r) (sp—$)
g integration function of time (herein con- | _
sidered as constant) o
g{8w) %‘ times bracketed portion of equation (66) .
. Subseripts:
H integration function of 2—-T% and y 0
k constant
L lift 1. 92
l distance along plan boundary T
M free-stream Mach number a b.a. a’
m rate of roll or rate of change in angle of gt an,d 7
attack B
1 rate of pitch, summation index, or coordi- | o
nate normal to curve _ H
P static pressure or function +/rs—s,
— (o7) M.{.ﬂ!_iLr‘s)X tT
["4(”) (os—0or)zs dsp w
Jun (sp—8) v/ (s0—$3) (82—3p) Examples:
R = JE—9—By—n*—8(=—73)* :2
R — _\!xlz_[_ylz_l_zl § i
T, § oblique coordinates whose axes lie parallel ;;,: ’
to Mach lines in z=0 plane d—)
7,8 point of tangency of wing plan boundary Sue
. >\a b
and foremost Mach line i~
S plan-form area 0
¢ time Aa
ZAf (e8—0ar)ep
t’ = (1 - Il)f_l_
U free-stream velocity
. . . ¢D
U, 0 variables of integration
w z component of perturbation velocity meas- T(n+1)
ured positively outward from surface of i
wing Te
. 1 (s wdr
E(I‘m 8) = ~Ax f_m '\;Tw—; To
- 1 te  wds
1 (1‘_, sw) = A= ‘r_m '\’IS—,;—;HE Ta’
r, Y, 2 Cartesian coordinates (free stream parallel | -,
to r-axis) (The z- and y-axes coincide for
top and bottom wing surface. The z-axis | 73
is measured positively outward from
either surface of wing.) T
oy, 2 transformed Cartesian coordinates
To

APPENDIX A

(J’."=1‘_, y'= \fl—:\;[?y, 2'= \,‘1—1'1122) .

Cartesian coordinates in r, ¥, 2 directions,
respectively -

angle of attack

cotangent of Mach angle, /72—

gamma function or eirculation

slopes of streamlines (measured in y=con-
stant planes) in 2=0 plane between Wing

boundary and foremost Mach line, A= U

density
effective wing-section slopes measured in

w
n=constant planes, C=T7

time delay
perturbation-velocity potential (variation
from free-stream velocity)

free stream, axes of roll or pitch, or without
vorticity

numbered areas or wing-plan-boundary
equations

time delays 74, 7, Ter, Tar, 73, 73, a0d 73,
respectively

bottom of wing

upwash field

associated with shed vorticity in upwash
field

top of wing

trailing edge

wing

curve r=ry(8)
curve 8=28;(r)
wing area 1 plus 2
derivative of curve r=ry(s,) with respeet
to 8,
slope at time {—r, plus slope at time t—r,
part of A remeaining if H is zero
part of A associated with A
difference between bottom and top wing
slopes at time f#—r7, plus this difference
at time {—m,
contribution of upwash field to velocity
potential on top wing surface
n!
My—s+re—r)+2/rp—r) (85—8)
MpBe
M(se—8+1o—1) =2+ (r—1) (S—8)
MBe

rp—r SD—S
B B
§p—S§
Be
ﬂi{(sw_s‘l'rw—r) +24 (rw'—r) (S,,—-SD)
AdBe
MEe—8+re—r) —2vVre—1) (Su—60)
A Be
—Tz(sw)
Be

Sp—8, Ty
fe +




APPENDIX B

DERIVATION OF EQUATIONS (44) AND (45)

The derivation of equation (44) in Cartesian coordinates is
presented in reference 15. An alternative derivation in
oblique coordinates is presented herein. The r, and s,
components of the perturbation velocities are obtained for
each of the areas S, and S, of figure 4 (b) in & manner
analogous to the derivation of equation (42) of the test.
The velocity potential at point (rs, $») associated with
the area Sy, is

~ ,’T‘
o w4 Sur

Pwtdrw,Sw
Sketch A

ar dr dS

o= Mx fful'\ [(ro—7) (85—8)

The potential an infinitesimal distance in the r direction from
the point (rs, s,) may be written

(B1)

I dr, ) drds
a‘Pl <7T+ m)
‘Pl+ dr-w 'lu'ﬁ,ff S

Y (TW—T) (sw_'s)
Udr,
A=

g ds
vd +/(ru—1) (85—8)

Udr, f ords
Mz Jab /(r,—1) (50—9)

Subtraction of equation (B1) from equation (B2) leaves

(B2)

aﬂ'r
der drds

dre M= ff., 1 1/(rw—r) (8,—$)
U f ords U
.llfﬂ' ab -\"(rw—r) (Sw—s)

In a similar manner

O'Td-?
AMx bd '\/(rw_r) (SW—S)

(B3)

aO'T
20 U [ irds LT ordr
dss  Mnr] Jsuiy (rw—r) ) Tz ) V=) Eu—s) '

G'Tds

Mr dspJva /(ry—r) (Sp—8) B4

The velocity potential associated with the area S,s (and
the upwash field) follows from equation (29) as

Ay — ff (.0'3',—0'7') drds
P M) Jse 2Vl (6o—)

(B5)

Sketech B

The potential at (r,+dr,s,) may be written as

[aa+ar+a("3 Faz) dr,a] rds
)
ez br =" x) Jsa, 2/ (ry—71) (80—8)

Udr, (cstor)ds
Mr Jooa 2(ra—1) (5u—9) '

Udr, f (08+07) ds
Az Jnd 2-\/6'1;;_7') (sw_"s)

Subtraction of equaﬁion (B5) from equation (B6) leaves

(B6)

1 a(“’s T G'T)d ds
as"z

ora Uff L- 2 (rw—-r) Va1 Eo—8)

f (UB-I‘O'T)lZS U f (.0'3+0'T)d3
Mrx bod 2 ’(r,,—r) (-S‘,,—S) Mr Joa 2'\1" (?‘,,—T) (8,.-—3)
Similarly,

7

1 a(°’3+°’r)
d¢s_ f f drds
085 M= S,y (r.o—r) (sw

_ (estonldr (65t or)ds

~£ dry f
‘1‘[7" bod 2 (7',,—1’) (sw_s) Mw dsw bd 2‘\' (I‘w—)“) (8.,'—8) ]

B8)

Addition of equations (B3) and (B7), and also equations
(B4) and (BS), gives the perturbation-velocity components
in the » and s directions, respectively, as

aO'T'
20 f ] drds
ar'" CMx Su,1 ¥ (rw_‘r) (-S'W—S)
1 a(a's'l"o'r) drds

E E O'rds —
Jfrf fs. 3 4 (r,,——r) (s0—3) Mrfab Vre—r) (2a—9)
f (_o’B—I—a'T)dS __g‘ (GT—O-B)dS
Mz Jo0a 2 (1) (8a—8) MxJoa2+/(re—1) (5o—9)
(B9)
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Do
as,,,

10.

11.

12.

18.

. Brown, Clinton E

. aa" drds

ﬂffrffsw . N/(Tw—l") (Sw—s) e e

1 a(ﬂ'x‘l‘a'r) drds
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The 2 and y components of the perturbation velocity, which
are given by equations (44) and (45), may be obtained from
equations (B9) and (B10) and the transformation equations

f f U —opdr [ M Op | O
Mr) Jsus + (r.,,—r) ©o—8)  Mr )b ru—n) (5o—8) % 28\0ry ' 08y B11)
—(optop)dr _U dr f (or—op)ds dp_M (0o 0p
ﬂf‘n‘ bod 2-\/(rw—r) (su—$8) ﬂf'rr JE; bd 2\_/ (ro—1) (8,—8) by 2 08y OFy
(B10)
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